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Abstract

The bending behavior of circular, fully or partially bonded (delaminated), sandwich plates with a “soft” core and
composite laminated face sheets of general layup is investigated. The analytical model derived follows the principles of
the High-Order Sandwich Plate Theory and it is based on equilibrium and compatibility requirements. The variational
principle of virtual work is employed for the derivation of the field equations along with the boundary and continuity
conditions. The delamination considered forms a penny shaped disbonded zone, in which the delaminated faces can slip
horizontally with respect one to another, yet they may be in contact accommodating vertical normal compressive
stresses. The core is assumed a 3D elastic medium and the composite face sheets are modeled using the classical
lamination theory, which yields coordinate dependent constitutive relations. The governing equations take the form of
partial differential equations with variable coefficients. The solution procedure adopts the Galerkin method with
truncated Fourier series in the circumferential direction and the multiple-points shooting method in the radial direction.
Numerical results concerning typical fully and partially bonded sandwich plates are presented and discussed. The re-
sults reveal the effect of the anisotropy of the face sheets on the response of the structure and the influence of the
delaminated area on the behavior of the sandwich plate. © 2002 Published by Elsevier Science Ltd.
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1. Introduction

Advanced sandwich structures provide unique solutions in many fields of aerospace, mechanical, civil,
and marine engineering. They combine materials to optimize the use of their different properties by bonding
high strength and stiffness face sheets to a low-density and low-strength core. In many practical applica-
tions, the use of sandwich structures includes circular sandwich plates, while in other cases, the analysis of

* Corresponding author. Tel.: +972-4-8293-046; fax: +972-4-8323-433.
E-mail address: cvrfros@techunix.technion.ac.il (Y. Frostig).

0020-7683/02/$ - see front matter © 2002 Published by Elsevier Science Ltd.
PII: S0020-7683(02)00239-1


mail to: cvrfros@techunix.technion.ac.il

3058 O. Rabinovitch, Y. Frostig | International Journal of Solids and Structures 39 (2002) 3057-3077

circular sandwich plates is required as a part of a sub-structuring (localization) process that enables detail
investigation of localized effects in large-scale structures. Modern sandwich panels are made of a low-
density flexible core and laminated composite face sheets. However, the laminated materials are usually
made of rectilinear orthotropic plies whereas cylindrical orthotropic laminates that meet the circular geo-
metry of the plate are not applicable. The use of such laminates in circular applications yields mechanical
properties that depend on the circumferential coordinate and significantly complicates both the analysis
and the design of such sandwich plates. In addition, the use of low strength core materials makes these
structural members vulnerable to localized effects and manufacturing faults. One of these faults is involved
with disbonding of the face sheets from the core. Such imperfection affects both the localized response of
the plate through stress concentrations at the delamination’s edge, and its overall bending behavior through
lack of composite action of the various constituents.

The linear and nonlinear behavior of various types of sandwich panels with incompressible (rigid) cores
has been widely investigated in the past years. Summaries of the general approaches are found in the
classical textbooks of Plantema (1966), Allen (1969), and Zenkert (1995). Recent comprehensive reviews
that present various analytical and computational models for sandwich structures are presented by Noor
et al. (1996) and Librescu and Hause (2000). A broad range of theoretical and numerical models for the
analysis of circular sandwich panels has been developed in the past years. A simplified and axisymmetric
model in which the governing and equilibrium equations are derived based on the Reissner—-Mindlin shear
deformation plate theory was presented by Wang (1995a,b). A similar approach has been used by Demsetz
and Gibson (1987) for weight minimization for a given flexural stiffness of the circular plate. The axi-
symmetric large amplitude free vibration of circular sandwich plates has been investigated by Du (1994)
and Du and Li (2000). However, these models are limited to axisymmetric or isotropic behavior of the
plate, to membrane action with no bending effects in the face sheets, and to incompressible cores. Higher
order behavior and localized effects induced due to the circumferential anisotropy of laminated face sheets
and due to flexibility of the core are not accounted for in these approaches. A different model has been
presented by Bofilios and Lyrintzis (1992) for the investigation of the dynamic response of circular
sandwich plates. This model accounts for the vertical compressibility of the core and for nonaxisymmetric
effects, yet it ignores the shear deformations of the core and the membrane (inplane) action of the face
sheets.

Recently, Frostig et al. (1992) and Frostig and Baruch (1992) have developed a general high-order theory
for the analysis of sandwich panels and plates. The High-Order Sandwich Plate Theory (HSAPT) has been
used extensively to model buckling and nonlinear response (Frostig, 1998; Sokolinski and Frostig, 1999),
vibrations (Frostig and Baruch, 1994), and stress concentrations in general (Frostig, 1993; Frostig and
Rabinovitch, 2000). In this theory, the high order and the localized effects are results of the closed form
solution of the mathematical model and no presumptions are imposed on the distribution of the defor-
mations through the thickness of the core. The theory accounts for the vertical flexibility of the core along
with its shear flexibility, and it is valid for a broad range of sandwich structures.

Although the problem of localized debonding of the face-sheets from the core is extremely important,
only a few analytical and experimental studies of such structures exist. These studies were discussed in
Frostig (1992) and Frostig and Sokolinsky (1999), and most of them are devoted to the overall behavior of
the delaminated panel and to its critical compression capacity (see for instance Zenkert, 1991; Somers et al.,
1991; Lin et al., 1996). Investigation of more localized effects at the edge of the delaminated region using
fracture mechanics criteria based on FE analysis was presented by Falk (1994). This study revealed the
stress concentrations that arise in the close vicinity of the edge of the delaminated region and demonstrates
their crucial influence on the safety of the structural members.

In this paper, the concepts of the HSAPT are adopted for the analysis of fully and partially bonded
(delaminated) circular sandwich plates that consists of composite laminated faces with a general layup and
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a compressible “soft” core. The model adopts the classical plate theory and uses the Bernoulli-Euler as-
sumption for the behavior of the composite laminated face sheets. The constitutive relations for the face
sheets are general, thus they can take any arbitrary layup (stacking sequence). The core is modeled as a 3D
linear elastic continuum, possessing shear and vertical normal rigidities only, while its inplane radial and
circumferential rigidities and its inplane shear rigidity are neglected (see Frostig et al., 1992; Frostig and
Baruch, 1994). In addition, it is assumed that the deformations are small, the loads are applied only at the
face sheets, and perfect bonding exists between the various constituents within the fully bonded region.
Therefore, the core—face sheets interfaces are capable of resisting shear and vertical normal stresses. In the
delaminated region, it is assumed that the disbonded faces are free of shear stresses (thus they may slip one
with respect to another), but can accommodate vertical normal stresses if contact between them exists.
Finally, it is assumed that the delamination exist prior to loading and does not expand as a result of the
stresses involved.

The mathematical formulation uses the variational principle of virtual work for the derivation of the
field equations along with the various boundary and continuity conditions. The formulation also includes
the closed-form solution of the stress and deformation fields within the core and the generalized constitutive
relations for the composite laminated face sheets. These constitutive relations are applicable to any general
layup of rectilinear layers and yield equivalent rigidities that are functions of the circumferential coordinate.
The governing equations of the fully or partially bonded regions form a set of partial differential equations
with variable coefficients. The solution procedure uses the Galerkin method in the circumferential direction,
and the multiple-points shooting method in the radial direction, whereas the distinction between delami-
nated regions with or without contact is conducted iteratively. Numerical investigation of the behavior of a
typical circular sandwich plate with cross-ply laminated face sheets and a compressible core is presented. In
addition, the influence of a localized circular delamination at the core—face sheet interface on the localized
and overall behavior of the plate is investigated. A summary and conclusions appear in the sequel.

2. Mathematical formulation

The mathematical formulation includes the derivation of the field equations along with the boundary
and continuity conditions, the constitutive relations, the stress and deformation fields of the core, and the
governing equations. The geometry, notation, and sign convention of the coordinates, loads, stresses, and
stress resultants appear in Fig. 1. Note that once a delamination has occurred, it divides the plate into two
characteristic regions, namely: a fully bonded region and a delaminated one. Furthermore, within the
delaminated region itself, a distinction is made between a delamination with interfacial vertical contact and
a delamination without such contact (see Fig. 1(c)). The mathematical formulation presented ahead focuses
on the fully bonded region, whereas the field and governing equations of the delaminated regions are
derived by degenerating the equations of the fully bonded one.

2.1. Fully bonded region—field equations

The Field equations along with the boundary and continuity conditions are derived via the variational
principle of potential energy minimization that requires
SU+V)=0 (1)

where U and V are the internal potential energy and the potential energy of the external loads, respectively,
and 9 is the variational operator.
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Fig. 1. Geometry, loads, sign convention, stress resultants and type of delaminations: (a) geometry, notations, and sign conventions;
(b) loads; (c) types of delaminated regions; (d) stresses and stress resultants.

The first variation of the internal energy, in terms of the stresses and strains in the various constituents of
the fully bonded region, read:

dU = / (01,88, + 04y8egy + Tp07hp) dv, + / (07,860, + agdegy + 175070 dus

vt Up

+ / (Trzayrz + 1926’))92 + O—zza‘qzz)dyc (2)

where ¢’ , 0%, and ¢ , &, are the stresses and strains in the radial and circumferential directions in the upper
(i = t) and the lower (i = b) face sheets, respectively; 7/, and }?, are the inplane shear stress and strain in
the face sheets, respectively; t,., 7o, and v,,, y,, are the out-of-plane shear stresses and shear angles of the
core, respectively; 0., and ¢, are normal stress and strain in the vertical direction in the core; v,, v, and v, are
the volume of the upper and lower face sheets and the core, respectively; and dv denotes an infinitesimal
volume segment, see Fig. 1.
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The first variation of the potential energy of the external loads equals:

2n r=R
SV = —/ / (n’rSuo, + ndve, + q'dw, +m 8w,,+m96r )rd ]d@
0 7

=0

2n - r=R
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3)

where n! and n, are the external inplane loads in the radial and circumferential direction distributed over the
area of the upper (i = ¢) or the lower (i = b) face sheets, respectively; m’ and mj, (i = ¢,b) are the external
distributed bending moments in the radial and circumferential directions, respectively; ¢’ (i =¢,b) are
distributed out-of-plane loads; Nm, N»O/’ P M”j, M, o0y (I=1, b) are the external loads and bending mo-
ments uniformly distributed along a circle of radius » = r;; Op is the delta of Dirac function; NC is the
number of circular line loads; ug;, vy, and w; (i =¢,b) are the radial, circumferential, and vertical dis-
placements of the face sheets, respectively; and () ; denotes partial derivative with respect to the coordinate
J (J =r 0)

The kinematic relations for the face sheets assuming small deformation and negligible shear effects read
(i =1, b)

ul(r,0,2) = (1, 0) — 20w, (1. 0), (. 0,2) = vai(r, 0) — 2220 0 0.2) = i, 0)
r
(i=1,b) (4)
Sf*r(rv 0721') = Sf)rr(rv 0) + Zin,r(V, 0)7 86”,(7‘, 9) = uOi,” Xi,(f’, 0) = _Wi,rr (l = t’ b) (5)
. . . . Vo, Uo; i Wi, Wi
8199(}", Q,Z,-) :8699(}", 0)"‘21'}{199(77 0)’ 8699(1”, 6) :070_’_707 X@G(ra 9) = _(r—zl)o ” )
(i=1b) (6)

; ; ; Upip Vo i Wirg  Wio .
Voo (r50,20) = Yo,0(r, 0) + 2ty (r, 0), 7,9(r, 0) = I + Vs Ay 0) = _2(7 + 72 ) (i=1b)
(7)

where &, vi,» x4 (k,1 =r,0; i =t,b) are the inplane normal strains, the inplane shear angle, and the
curvatures, respectively, of the upper and lower face sheets. Note that the vertical coordinate z; (i = ¢,b) is
measured form the midplane of each face sheet downward, independently, and the circumferential coor-
dinate, 0, is measured clockwise, see Fig. 1.

The kinematic relations for the core are based on 3D linear elasticity assuming small deformations and
read

e (7, QaZC) = chz(r, 91Z0>> yrz(ra Qazc) = uc.z(ra 0720) + Ww(ra 0,zc),

weo(r, 0, zc)

@)

where u., v., and w, are the radial, circumferential, and vertical displacements of the core, respectively.

Vﬁz(rv esz) = vcz(’”v esz) +
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The compatibility conditions require perfect bonding at the upper and lower core—face sheet interfaces.
Hence, they read

Wc(ra ()aZC :O) :Wt(rv O)v WC(ry O,ZC :C) :Wb(}",()) (9)
d,

uc(r,0,z. = 0) = ug,(r,0) — Ewt_, (10a)
dp

uc(r,0,z. = ¢) = ugp(r, 0) + Ewb, (10b)
d,

ve(r, 0,z = 0) = vo,(r, 0) — = Wep (11a)
2 r
dp Wh.0

UC(I”,H,ZC:C) :UOb(V,H)—FET (llb)

where c is the depth of the core; d; (i = ¢, b) are the depths of the upper and lower face sheets; and z. is the
vertical coordinate of the core measured from the upper core—face sheet interface downward, thus z. = 0
and z, = c refer to the upper and the lower core—face sheet interfaces respectively, see Fig. 1. Notice that the
above compatibility conditions are imposed only in the fully bonded region. In the delaminated region, the
disbonded constituents are free to slip horizontally with respect to one another, thus the compatibility
conditions, Egs. (10a), (10b), (11a) and (11b), at the delaminated interface are released. Yet, if the dela-
minated face sheet and the adjacent core remain in contact vertically (‘““delamination with contact™), the
vertical compatibility condition of Eq. (9) must be fulfilled, while in the case of delamination without in-
terfacial contact this condition is released as well.

Integration of the stresses through the depth of the face sheets defines the internal stress resultants as
follows:

_ &/2 ) a2
Ny = / 0w dzi, My = / 0yzidz;, (i=1t0) (k=r0)

di/2 d;/2
_ af2 _ 42 (12)
Ny= [ dyda, My= [ dddz, (=1b)

—d;i/2 —di/2

where N'., N}, (i =t,b) are the inplane radial and circumferential stress resultants; N, (i =t,b) are the
inplane shear stress resultants; M’ , M}, (i = t,b) are the radial and circumferential bending moments; and
M, (i = t,b) are the twisting moments.

The field equations are derived using the variational principle, Egs. (1)—(3), along with the kinematic
relations, Egs. (4)—(7), the compatibility conditions, Egs. (9), (10a), (10b), (11a) and (11b), and the internal
stress resultants, Eq. (12). After some algebraic manipulation the field equations of the fully bonded region
read

(N, 1), = Ngg+Nlgg+ (v 1)+ 1.7 =0 (13)
(N5 7)), = Nog + Ny — (12 1)+ =0 (14)
(N;fo'r),,+N50,0+Nrtv+(70z"”)+”§)"’:0 (15)
(Nrbe'r),*‘Ngﬁﬁ"‘Nfe_(TOZ"”)"‘”S"’ZO (16)



O. Rabinovitch, Y. Frostig | International Journal of Solids and Structures 39 (2002) 3057-3077 3063

M} M! d, d,
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(17)

M3y g9 M}y, dy dp
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(18)
Ozz5z ' + (Trz . r)ar +T92,9 = O (19)

T"ZZ -

=0 (20)
Tozz = 0 (21)

2.2. Fully bonded region—core stress and displacement fields

The stress and displacement fields of the core are derived using the equilibrium equations, the com-
patibility requirements, the kinematic relations, and linear and elastic constitutive relation. The solution of
Egs. (20) and (21) reveal uniform shear stress distributions through the thickness of the core, thus

Trz(ra Q,ZC) = Trz(ra 0) (22)
10.(r, 0,2.) = 10,(r, 0) (23)

The solution of the vertical equilibrium equation, (19), along with the shear stress distributions of Egs.
(23) and (24), yields the vertical normal stress field that reads

6.(r,0,z) =2 - Vg, - (“’:’)” +%> (2-%) (24)

2

where E. is the elastic modulus of the core in the vertical direction. The vertical displacement field of the
core is defined using the vertical normal stress distribution, Eq. (24), along with the compatibility of the
vertical displacement requirement, Eq. (9). Hence, it takes the following form:

T V) T Wy — W,
we(r,0,z.) = <% + ZFOEC) (czc - zg) + (/)76»2C + w, (25)

The radial and the circumferential displacement fields are determined using Eq. (25), the constitutive and
kinematic relations, and the perfect bond compatibility conditions at the interfaces, Egs. (10a) and (11a).
Thus, after integration through the depth of the core, the radial and the circumferential displacement fields
equal

dr Tz Trz T6z,0r T0z,0 Z3
— ki 9 k) C
U (1”7 0720) = Uyt — F Wir + (Trz,rr + - )

2 r? r r2 J 6E,
Wi — Why 4 Tyz Trzr T0z,0 Toz,0r 2 Tyz
4| 2 (—— A ‘——')z—i— = —w, )z 26
2c 4E. \ 12 r T2 r ¢ G, n)e (26)
dt Wi o T6z,00 Trzr0 Tyz,0 Z3 Wio — Wpo c Trz,0 102,00 Tyz,0
Uc(rg Bazc) = U()t - A - + ( 2’2 + = + ,2 ) < + - — — ( r227 zé - = r) Zg
2 r r r r2 /) 6E, 2rc 4E.\ r r r

Toz Wio
e M), 27
+ (Gc r )Z (27)
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where G, is the shear modulus of the core. Note that the stress and deformation fields of Egs. (22)—(26), (28)
have nonlinear patterns through the depth of the core and actually describe the high order effects in the
core.

2.3. Delaminated region—field equations

In the case of a delamination with contact, the shear stresses at the disbonded interface vanish; yet, it can
accommodate vertical normal stresses. Accordingly, the solution of Eqs. (20) and (21), along with the
requirement of zero sheer stresses at the delaminated interface, reveal that the shear stresses are nil
throughout the entire depth of the core

7.(r,0,z.) =0 (28)

‘L'()z(l"7 H7ZC) = 0 (29)

Introducing the resulting nullified shear stress fields into Eq. (19) yields a uniform vertical normal stress
distribution through the depth of the core as follows:

o =a.(r,0) ="M

zz

— ke (30)
where ¢°. denotes the constant vertical normal stress field through the thickness of the core. Consequently,
the field equations of the upper and lower face sheets in the delaminated region when interfacial contact
exists are

(Nrtr-r)yr—Nég—V—Nr’@'g—Fn’r-r:O (31)
(N5 7)), = Nog + Ny +n -r =0 (32)
(Nrte'r),"‘thmﬁ + Ny +ng-r=0 (33)
(N3 7), + Nogo + Njy+ g =0 (34)
(M}, - 7) e =My, —|—@ +2My 5 + ZM}{H‘Q +olr+q'r— (ml-r), —my, =0 (35)
(01—l 200 gt 20 0 ), =0 (36)

In the case of a delamination without contact, both shear and the vertical normal stresses at the disbonded
interface vanish. Egs. (19)—(21) and the stress-free face conditions at the delaminated interface yield null
shear and vertical stress distributions through the height of the core, t.. = 74, = ¢°, = 0. Hence, the re-
sulting field equations of the upper and lower face sheets include Eqgs. (31)—(34), and Eqgs. (35)-(36) after
omitting the terms multiplied by ¢..

2.4. Boundary and continuity conditions

The variational principle yields nine boundary conditions at the edges of the fully bonded region and
eighteen continuity conditions within this region. The boundary conditions are:

- N}f’ — Nlrr =0 or Uuy; = Uo; (37)
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}, . erg — N:H = 0 or vy = 50,- (38)
M +2M!,, — M o d — _

P s M+ STe| =P —m=0 or wi=w (39)

—ﬂv . er — A_llrr = O or W,‘,r = V_V,'J (40)

vl

where N, N,,, P and M,, (i = t,b) are external loads and bending moments exerted along the edge of the
upper and lower face sheets, 4, Uy;, w; and w;, are prescribed deformations and rotations, 4 = 1 at the outer
edges, and A = —1 at the center.

The boundary conditions at any point through the thickness of the core read:

7.(0) =0 or w.(0,z) = w(0,z) (41)

where w,(6,z.) is a prescribed vertical displacement through the thickness of the core.

The continuity conditions require continuity of the displacements and slopes along with equilibrium of
the internal forces and the external loads. The continuity conditions of the upper and lower face sheets at
r = r; within the bonded region are:

uy =uys v = oy ow =) = (42)
N N =N, )
Ny =Ny =N, (44)
M) oM ) — M) M) oM — _ .
- - R A e M Y =P (45)
v ’ r; ’

i

MO M =T (46)
And the continuity conditions of the core are:
w1y 0,2¢) = w1y, 0,2) (47)
7. (0) = 7 (0) (48)

In the delaminated region (with and without contact), the variational principle yields eight boundary and
sixteen continuity conditions. The boundary conditions at the edges of these regions consist of Egs. (37)—
(40) without the terms that include 7,,. The continuity conditions within the delaminated region include
Eqgs. (42)-(46) without the terms that include 7,..

3. Constitutive relations

The generalized constitutive relations for the upper and lower composite laminated face sheets read

BN
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where N/, M, &, y' are the vectors of the internal stress resultants and the midplane surface strain and
curvature, respectively, and A’, B/, and D’ are the extensional, extension-flexural, and flexural rigidities of
the upper (i = ¢) and the lower (i = b) face sheets, respectively (see Jones, 1975)).

In the general case of the circular laminated plate, these rigidities are 0-dependent and equal:

Ci1(0) = C1(0)m* + 2(C12(0) + 2Ce5(0))n*m* + Crp(0)r* (50)
C12(0) = (C11(0) + C2(0) — 4Ce6(0))n*m* + C12(0) (n* + m*) (51)
Cx(0) = C1(0)n* + 2(C12(0) 4 2C45(0))n*m* + Cry (0)m* (52)
Ci6(0) = (C11(0) — C12(0) — 2Cs5(0))nm* + (C12(0) — C(0) + 2Ce5(0))rmn® (53)
Cas(0) = (C11(0) — C12(0) — 2Ce6(0))mn’ + (C12(0) — C2(0) + 2Ce5(0))nm’ (54)
Ces(0) = (C11(0) + Cx(0) — 2C12(0) — 2Ce6(0))m*m* + Cos(0)(n* + m*) (55)

where m = cos(0) and n = sin(0); Cy(0) = 45,(0), B}, (0), D, (0) (i =t,b) are the 0-dependent rigidities;
Ci(0) refers to the rigidities evaluated at 6 = 0 and the subscripts j,k = 1,2,6 refer to the radial, the
circumferential, and the inplane shear/twisting directions, respectively. Note that in this case, Egs. (50)—(55)

represent the O-dependent rigidities of the circular plate, and not the classical stiffness transformations.

4. Governing equations and solutions

The governing equations of the fully bonded and the delaminated regions are derived using the field
equations along with the constitutive relations and the stress fields of the core. The seventh and eighth
equations of the fully bonded region are determined by imposing the compatibility requirement of the
radial and circumferential displacements at the lower core—face sheet interface, Egs. (10b) and (11b). This is
achieved using the displacement fields of the core, Egs. (26) and (28), evaluated at z. = ¢. Thus, the
compatibility equations of the fully bonded region read:

T Ty Te0  Too0r\ € c+d, c+d T
(—— = — Tt =0 Hﬂ) < t)“’;;-( h)Wb,r+_C+u01_u0b:0 (56)

2y 2 J12E. \ 2 2 G.
3
Tz To200 Trzor\ C c+d \ wy c+dy\ Woo  To:
_ =y B i _ B oYy _ =0 57
( 22 )IZEC ( 2 >r ( 2 ) ;TG et (57)

In the delaminated regions, the disbonded faces are free to slip one with respect to another, hence no
compatibility requirements are imposed on the horizontal displacements.

Finally, the formulation yields a set of six partial differential governing equations in the delaminated
region and eight equations in the fully bonded region. These equations are stated in terms of the unknown
displacements and the unknown shear stresses of the core. However, the equations are rather lengthy and
cumbersome, thus, they are not presented here explicitly. For brevity, the governing equations are referred
here through a differential operator. In the fully bonded region the differential operator reads:

Ly, (W(r,0) — fu=0 m=1,....8 (58)

where

W = {u,(r, 0), uop(r, 0), vo,(r, 0), v (r, 0), w,(r, ), wy(r, 0), 7. (r, 0), 7o, (r, 9)}T



O. Rabinovitch, Y. Frostig | International Journal of Solids and Structures 39 (2002) 3057-3077 3067

is the vector of unknowns; f,, denotes the external distributed loads and moments; Ly, withm =1,...,61s
the differential operator of the equilibrium equations (Eqgs. (13)—(18) in terms of the unknowns), and Ly,
withm =7, ..., 8 refers to the compatibility equations of the fully bonded region (Egs. (56) and (57)). In the
delaminated region, the last two terms in the vector of the unknowns are omitted and the operator refers
only to the six equilibrium equations.

The boundary/continuity conditions are also presented in the form of a differential operator that in the
fully bonded region equals:

LBCk(\Il(G))_ECZO k:1v79 (59)

where Lpc, (k=1,...,9) refers to Eqs. (37)—(41), and F; denotes the external loads and moments of the
natural boundary conditions or the prescribed deformation fields of the essential boundary conditions. The
differential operator of the continuity conditions at » = r; within the fully bonded region reads:

Lee, (W(r,0)) =P =0 1=1,...,18 (60)

where Lcc, (I =1, ..., 18) is the differential operator and P, denotes the circular line loads and moments for
the natural continuity conditions (Egs. (43)-(47)), and P, = 0 is used in the essential boundary conditions
(Egs. (42) and (48)). Again here, the eight boundary and conditions and the sixteen continuity conditions of
the delaminated region are derived by omitting the last two terms in  and using Egs. (59) and (60) with
(k=1,...,8)and (I =1,...,16), respectively.

It was noted earlier that the size of the delaminated region is assumed not to grow under loading, yet the
type of delamination (with or without contact) is determined iteratively. The type of delamination is as-
sumed a priori, and validated through the results. If the presumption turns to be incorrect, reanalysis with
the other type of delamination is conducted. In most practical cases, this iterative procedure converges very
fast and it is not involved with major computational efforts.

The resulting governing equations form three different sets of partial differential equations with coeffi-
cients that are functions of both the radial and the circumferential coordinates. Hence, a closed-form type
of solution does not exist and an approximated solution approach based on the Galerkin method in the
circumferential direction and the multiple-points shooting method in the radial direction is employed. The
approximated solution takes the form of truncated Fourier series and in the case of axisymmetric out-
of-plane loading it equals

N N
ug,(r, 0) =~ Zu't cos(nl), up(r,0) ~ Zugb(r) cos(nb) (61)
n=0 n=0
N
vo,(r, 0) = Zv )sin(n0), vo(r,0) = > v,(r) sin(n0) (62)
n=0
N N
w,(r, 0) =~ Zw;’(r) cos(nf), wy(r,0) = Zw,’j(r) cos(nb) (63)
n=0 n=0
N
T,.(r,0) = Zrz cos(nf), 14.(r,0) Zr ) sin(n6) (64)

n=

where ug, (), ug, (r), vG,(r), v, (r), wi(r), wj(r), T.(r), and 7.(r) are unknown functions of the radial co-
ordinate only, and N denotes the number of terms in the series. The partial differential equations are thus
replaced by a set of ordinary differential equations resulting from the Galerkin integrals that read:
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/0 (L, W, 0)) — fi)gn(0))d0=0 m—1,...80r 6 n=0,...,N (65)

where g,(6) is determined in accordance with the variational term that multiplies the various equilibrium
and compatibility equations, i.e., g,(0) = cos(nf) form =1, 2, 5, 6, 7 and g,(0) = sin(n0) for m = 3, 4, 8.

Accordingly, the Galerkin procedure is applied to the boundary and continuity conditions of Egs. (59)
and (60) as follows:

/zn((LBCk(l/l(O))—Fk)g,,(O))d():O k=1,...,9 or 8 n=0,...,N (66)

/zn((Lcc,(l//(H))—P,)gn(Q))dGZO I=1,...,18 or 16, n=0,....N (67)

where in the case of natural boundary/continuity conditions g,(0) is defined by the variational term that
multiplies each condition. In the case of essential conditions, g,(6) is set equal to the 8-dependent function
that appears in the approximated solution, Eqgs. (61)-(64).

The Galerkin procedure employed in the circumferential direction yields a set of ordinary differential
equations with r-dependent coefficients. These equations are further transformed into a set of coupled first
order equations that along with the boundary/continuity conditions are solved numerically using the
multiple-points shooting method (see Stoer and Bulirsch, 1993). The accuracy of the numerical method is
examined through the convergence of the solution with an increased number of terms in the truncated
Fourier series and with refinement of the multi-points shooting mesh. The fulfillment of the overall vertical
equilibrium is also examined and a condition of relative error smaller than 10~° has been adopted.

5. Numerical study

The behavior of a circular sandwich plate, loaded by a localized distributed load at its center and simply
supported only at the lower face sheet, is investigated for three particular cases. In the first case, the
sandwich plate is fully bonded and the localized load is exerted at the upper face sheet. In the second and
the third cases, a penny shaped delamination located at the lower core—face interface at the center of the
plate is considered. In the second case studied, the load is exerted at the upper face sheet, thus a type of
delamination “with contact” is expected. In the third case the lower face sheet is loaded, thus a type of
delamination “without contact™ is likely to occur. The geometrical layout and the loading scheme of the
investigated bonded and delaminated plates appear in Fig. 2. The mechanical properties of the core and
the composite laminated face sheets appear in Table 1. Note that the loads, the boundary conditions, and
the mechanical properties of the core are symmetrical about the z-axis (axisymmetric). In addition, the
layup used for the laminated composite face sheets is symmetrical about the mid-height plane of each face
sheet, thus the B matrix vanishes. However, the rigidities of the upper and lower face sheets are 0-
dependent. In the following sections, the influence of the anisotropy of the laminated face sheets of the
behavior of the sandwich structure is investigated.

Five terms truncated Fourier series (n = 0,...,4) are used for the depiction of the structural response in
the circumferential direction. Yet, due to the 0°/180° symmetry of the laminated face sheets, only even
values of n yield nonvanishing equations. Thus, the order of the resulting problem is fifty. In the delami-
nated region (with or without contact), the order of the resulting problem is reduced to 44. The results are
presented in terms of the displacements and internal stress resultant in the face sheets, the shear stresses in
the core, and the vertical normal stresses in the upper and lower core—face interfaces.
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i R=150 mm : R | | ©=20.0 mm
: e ] =d=1.37 mm
'i—_\"_Rload =35 mm R=150 mm
' Case C: Delaminated Plate
Fig. 2. Numerical example: geometry and loading schemes.
Table 1
Material properties
Isotropic materials E (GPa) G (GPa) v (=) ¢ (mm)
Core 52.5 21.0 0.25 20
Composite materials  E;; (GPa)* Ey (GPa)* Gy, (GPa)* vi2 () tply (Mm) Stacking se-
quence
Face sheets 165 9.7 4.8 0.31 0.152 [0,90,0]5s

#Here the 1, 2 notation refers to directions parallel and perpendicular to the fiber’s directions of each orthotropic ply, respectively.

5.1. Case A: Fully bonded sandwich plate

The first example investigates a fully bonded sandwich panel subjected to a localized load exerted at its
upper face (see Fig. 2, case A). The results in terms of the radial, circumferential, and vertical deflections
appear in Fig. 3 and reveal that even though the loads and the boundary conditions are axisymmetric, the
resulting displacement fields depend on both the radial and the circumferential coordinates. Notice that the
vertical deflections exhibit a somewhat reduced dependence on the circumferential coordinate, as compared
to the radial or the circumferential ones. This effect implies that the strong anisotropy of the face sheets is
damped by the compliant core. Also, notice that the vertical deflections of the upper and the lower face
sheets are alike throughout most of the plate’s area. This excludes the area in the close vicinity of the
localized load and near the edge of the plate, where only the lower face sheet is supported while the upper
one is free. These trends are attributed to the compressibility of the “soft” core and to the high order effects
that are accounted for in the proposed approach.

The inplane and moment stress resultants in the upper and lower face sheets of the fully bonded
sandwich plate appear in Fig. 4. The results reveal that both the inplane and the moment radial stress
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Fig. 3. Displacements of a fully bonded sandwich plate: (a) radial displacements; (b) circumferential displacements; (c) vertical dis-
placements. (Legend: (—) upper face sheet, (---) lower face sheet, (0) 0 = 0°, () 0 = 22.5°, (x) 0 =45°, (V) 0 = 67.5°, () 6 = 90°).
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Fig. 4. Internal stress resultants in upper and lower face sheets of a fully bonded sandwich plate: (a—c) inplane stress resultants; (d—f)
moment stress resultants. (Legend: (—) upper face sheet, (---) lower face sheet, (0) 0 = 0°, () 0 = 22.5°, (x) 8 =45°, (V) 0 = 67.5°,
() 0 =90°).

resultants, which form the main load transfer mechanism of the sandwich plate, are considerably larger
than the circumferential and the shear/twisting stress resultants. The results also indicate that the internal
stress resultants are affected by the anisotropy of the laminated face sheets. The radial stress resultants at
0 = 0°, which is the stiffest direction of the face sheet, are significantly larger than those observed at
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Fig. 5. Shear stresses in the core and vertical normal stresses in the core—face sheet interfaces of a fully bonded sandwich plate: (a) shear
stresses on radial face, ,.; (b) shear stresses on circumferential face, 74_; (c) vertical normal stresses. (Legend: (—) upper face sheet, (---)
lower face sheet, (0) 0 = 0°, () 0 = 22.5°, (x) 0 =45°, (V) 0 = 67.5°, (O) 0 =90°).

0 = 90°, which is the most compliant direction. Hence, the composite action of the sandwich, which is
defined as the ratio of the global bending moment carried in the form of an inplane tensile and compressive
couple in the face sheets, is enhanced in the stiffer direction and reduced in the more compliant ones. The
results presented in Fig. 4 also reveal that the boundary conditions at the edge of the plate
N! (6,R) = N/y(0,R) = M! (0,R) =0 (i =1t,b) are almost perfectly fulfilled, although imposed only in an
integral “weak” form via the Galerkin method, Eq. (66).

The shear stresses on the radial (z,.) and on the circumferential (z,,) faces of the core and the vertical
normal stresses at the upper and lower core—face sheet interfaces appear in Fig. 5(a)—(c), respectively. Fig.
5(a) and (b) indicate that the shear stresses on the radial face of the core are considerably larger than those
on the circumferential one, and their dependence on the circumferential coordinate is weaker. The distri-
butions of the interfacial normal stresses reveal the localized stress concentrations that arise in the vicinity
of the localized load and near the edge of the plate. These localized effects are characterized by dissimilar
stresses at the upper and the lower core-face interfaces resulting from the high shear gradients in these
regions, see Eq. (26). It is important to emphasis that these localized effects that are predicted by the high-
order theory (HSAPT) are among the major causes of damage or even premature failure of many types of
sandwich structures. One of these damage patterns is associated with disbonding or delamination at the
core—face interfaces. In the next sections, the influence of such a delamination on the overall and localized
response of the sandwich structure is investigated.

5.2. Case B: Delaminated sandwich plate—upper face sheet loaded

In this case, the behavior of a delaminated sandwich plate with a ““soft” core and laminated face sheets is
investigated. The geometrical and mechanical properties of the plate and the loading scheme are identical
with those of the plate in case A and appear in Fig. 2 and Table 1. However, in this case, a circular 50-mm-
radius delamination is located in the center of the plate at the lower core—face interface (see Fig. 2, case B).
In addition, the localized load is exerted at the upper face sheet; hence, a type of delamination “with
contact” is initially presumed.

The results in terms of the displacement fields of the delaminated plate appear in Fig. 6 and reveal that
the radial and circumferential displacements exhibit similar magnitudes and trends to those observed in the
fully bonded plate. However, the vertical displacements are increased, and they are about twice the de-
flections in the fully bonded plate. This phenomenon is attributed to the lack of composite action of the
upper and lower face sheets as a result of the null shear stresses in the delaminated region. The vertical
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Fig. 6. Displacements of a delaminated sandwich plate loaded at its upper face: (a) radial displacements; (b) circumferential dis-
placements; (c) vertical displacements. (Legend: (—) upper face sheet, (- - -) lower face sheet, (0) 0 = 0°, () 0 = 22.5°, (x) 0 = 45°, (V)
0 = 67.5°, (O) 6 = 90°).

displacement fields (Fig. 6(c)) also show that the deflections of the upper face sheet are larger than those of
the lower one throughout the entire delaminated region. Hence, the assumption of delamination with
vertical contact is justified and reanalysis is not required.

Additional results in terms of the internal inplane and moment stress resultants in the upper and lower
face sheets of the delaminated sandwich plate are presented in Fig. 7. These results indicate that the radial
and the shear stress resultants are reduced by about 15%, as compared with those of the fully bonded plate,
whereas the circumferential resultants are not significantly changed (see Figs. 7(a)—(c) and 4(a)—(c)). Cor-
respondingly, the moment stress resultants, and especially the radial bending moments near the center of
the plate and near the edge of the delaminated region, are amplified by an order of magnitude, as compared
with those observed in the fully bonded plate (see Figs. 7(d)—(f) and 4(d)—(f)). Hence, it can be concluded
that the existence of a delaminated region at the center of the plate impairs the composite action of the
sandwich structure. However, it appears that the delaminated plate is still capable of resisting the applied
load and can still be considered as a functioning structural member.

The stress fields within the core of the delaminated plate appear in Fig. 8 and clearly show the null shear
stresses and the constant through the thickness vertical normal stresses within the delaminated region. The
results also reveal the high stress concentrations that arise in the vicinity of the delamination’s edge. This
stress concentration is governed by the rapid growth of the shear stresses that yields vertical normal
compressive stresses at the upper core—face sheet interface and vertical normal tensile (peeling) stresses at
the lower interface (see Fig. 8(c)). Notice that the stress concentrations near the edge of the delaminated
region are significantly higher than those that arise near the edge of the plate. Furthermore, in many cases,
the high peeling stresses that develop at the tip of delaminated zone are the main cause to the growth of the
delaminated area, which might lead to failure of the entire sandwich plate.

5.3. Case C: Delaminated sandwich plate—Ilower face sheet loaded

The last case investigates the same delaminated sandwich plate studied in the previous section; yet, here
the lower face sheet is loaded instead of the upper one (see Fig. 2, case C). Such configuration and loading
scheme entail the presumption of a delamination “without contact”. The radial, circumferential, and
vertical displacements of this delaminated plate that appear in Fig. 9 clearly demonstrate the effect of this
loading scheme on the behavior of the delaminated structure. Here, the radial and the circumferential
displacements (Fig. 9(a) and (b)) are similar to those observed in cases A and B, but the vertical dis-
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Fig. 7. Internal stress resultants in upper and lower face sheets of a delaminated sandwich plate loaded at its upper face: (a—c) inplane
stress resultants; (d—f) moment stress resultants. (Legend: (—) upper face sheet, (- --) lower face sheet, (0) 0 = 0°, () 0 = 22.5°, (x)
0 =45°(v) 0 =67.5° (0) 6 =90°).

DELAMINATED PLATE - UPPER FACE LOADED

0.0 Core Shear Stress (radial) 0.00 Core Shear stress (circumferential) Vertical Normal Stresses (core - face interfaces)
0.8]
08 0.6]
I . -0.005 0.4
£-0.05 & 0.2
= 2 001 0
S 0.1 g 0.2
-0.015 04
-0.15 0.02 0.6
-0.8
-0.2 -0.02 -1

50 fmm] 100 150 50 ffmm] 100 o 50 ] 100 K
(a) (b) (c)

Fig. 8. Shear stresses in the core and vertical normal stresses in the core—face sheet interfaces of a delaminated sandwich plate loaded at
its upper face: (a) shear stresses on radial face, 7,.; (b) shear stresses on circumferential face, 7y ; (c) vertical normal stresses. (Legend:
(—) upper face sheet, (---) lower face sheet, (0) 0 = 0°, () 0 = 22.5°, (x) 0 =45°, (V) 0 = 67.5°, (O) 0 = 90°).

placements are significantly larger and equal about four times the vertical displacements observed in the
fully bonded plate. The results also justify the initial assumption of a delamination without contact since
the vertical displacements of the loaded lower face sheet are considerably larger than those of the upper one
throughout the entire delaminated region.



3074 O. Rabinovitch, Y. Frostig | International Journal of Solids and Structures 39 (2002) 3057-3077
DELAMINATED PLATE - LOWER FACE LOADED
x1 03 Radial Displacements X 10* Circumferential Displacements 2 Vertical Deflections
PR —— S S
3 L eme® [ R
A e N

N
3

%

50 100

r[mm]

(2)

T00

50 r[mm]

(b)

50 100

r[mm)]

©

Fig. 9. Displacements of a delaminated sandwich plate loaded at its lower face: (a) radial displacements; (b) circumferential dis-
placements; (c) vertical displacements. (Legend: (—) upper face sheet, (- - -) lower face sheet, (0) 0 = 0°, () 0 = 22.5°, (x) 0 = 45°, (V)

0 = 67.5°, (0) 6 = 90°).

Further results in terms of the inplane and moment stress resultants in the upper and lower face sheets
appear in Fig. 10. The inplane radial, circumferential, and shear stress resultants are similar, both in trends
and in magnitudes, to those observed in the fully bonded plate and are almost identical to those observed in
the delaminated plate where interfacial contact exists. On the contrary, the radial and circumferential
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Fig. 10. Internal stress resultants in upper and lower face sheets of a delaminated sandwich plate loaded at its lower face: (a—c) inplane
stress resultants; (d—f) moment stress resultants. (Legend: (—) upper face sheet, (---) lower face sheet, (0) 0 = 0°, () 0 = 22.5°, (x)

0 =45°, (v) 0 = 67.5°, () 0 = 90°).
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Fig. 11. Shear stresses in the core and vertical normal stresses in the core—face sheet interfaces of a delaminated sandwich plate loaded
at its lower face: (a) shear stresses on radial face, 7,.; (b) shear stresses on circumferential face, 74, ; (c) vertical normal stresses. (Legend:
(—) upper face sheet, (---) lower face sheet, (o) 0 = 0°, () 0 = 22.5°, (x) 6 =45°, (V) 0 = 67.5°, (O) 0 = 90°).

bending moments and the twisting moments in the loaded lower face sheet are considerably amplified, as
compared with those observed in previous cases, whereas the moments in the upper face sheet are nearly nil
throughout the delaminated region. This phenomenon implies that the load is carried only by the lower face
sheet, while its collaboration with the upper face sheet is achieved only through the continuity requirements
at the edge of the delaminated region.

The shear and vertical normal stress distributions that appear in Fig. 11 reveal that the stress concen-
trations that arise near the edge of the delaminated region, and especially the high peeling stresses, are also
increased, as compared to the response of the fully bonded plate and the delaminated plate with contact.
These stress distributions also reveal the null shear stresses and the null vertical normal stresses of the core
within the delaminated region. Hence, the behavior of the delaminated region, in the case of delamination
without contact, is that of two separate thin laminated plates interconnected only at the edge of the del-
aminated region. This configuration yields high stresses in the face sheets and high stress concentrations at
the edge of the delaminated region that in many cases entail a total failure of the sandwich plate imme-
diately with the formation of disbonded region.

6. Summary and conclusions

A systematic high-order approach for the analysis of circular, fully bonded or delaminated, sandwich
plates with a soft core and laminated composite face sheets of general layup has been presented. The de-
rived model follows the concept of the HSAPT that is based on equilibrium and compatibility requirements
in every part of the structure. It allows the analysis of fully bonded as well as delaminated sandwich plates,
with or without contact at the disbonded interfaces. The displacements and the stress fields of the com-
pressible core are determined through the solution of its 3D elasticity field equations along with the ki-
nematic and constitutive relations and are not postulated a priori. In addition, the model accounts for
arbitrary layup for the laminated composite face sheets that may have any coordinate dependent me-
chanical properties.

The field equations and the corresponding boundary and continuity conditions have been derived via the
variational principle of virtual work. The field equations, along with the coordinate dependent constitutive
relations, the closed-form stress and displacement fields of the core, and the compatibility requirements
yield a set of partial differential equations with variable coefficients. A solution procedure that adopts the
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Galerkin method with truncated Fourier series in the circumferential direction and the multiple-points
shooting method in the radial direction has been employed.

The capabilities of the proposed model have been demonstrated through the numerical investigation of
three particular cases. In the first one, the influence of the anisotropy of the cross-ply laminated face sheets
of the structural response of a fully bonded circular sandwich plate has been investigated. In the second
case, the effect of a localized penny shaped delamination located at the lower core—face sheet interface on
the behavior of a sandwich plate loaded at its upper face sheet has been investigated. The results in this case
have revealed that this geometry and loading scheme yields a type of delamination ““with contact™, which is
associated with constant through the depth of the core vertical compressive stress in the delaminated re-
gion. In the last case, the lower face sheet of the delaminated plate has been loaded, leading to a type of
delamination “without contact.”

The results have revealed that despite the fact that the layout, the loading, and the boundary conditions
of the investigated sandwich plates are symmetrical about the z-axis (axisymmetric), the response of the
structure is affected by the strong anisotropy of the laminated face sheets. However, it appears that these
effects are somewhat damped by the compressible “soft” core. The comparison of the response of the
delaminated plates with that of the fully bonded one has revealed that the disbonding at the core—face sheet
interface impairs the composite action of the face sheets, reduces the efficiency of the sandwich structure,
and is associated with high stress concentrations at the edge of the delaminated region. However, in the case
of delamination with contact, the damaged structure is still capable of resisting the imposed load, while in
the case of delamination without contact, the load is carried only by the loaded face sheet and failure of the
structure is likely to occur. Furthermore, all these cases reveal that whenever sandwich structures are used,
the localized effects in the form of high internal stress resultants in the face sheets and stress concentrations
in the core are inevitable. Accurate prediction of these localized effects, which are one of the major causes of
premature failure in such structures, is one of the major advantages of the proposed model.

Finally, it can be concluded that the presented high-order model can be effectively used to describe the
behavior of circular bonded and delaminated sandwich plates of various layout and loading and it sets the
basis for their effective design and safe use.
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